Measurement and Modeling of Short Copper Cables for Ultra-Wideband Communication

Thomas Magesacher1 \quad Jaume Rius i Riu1,2 \quad Miloš Jakovljević3 \\
Murilo Loiola4 \quad Per Ödling1 \quad Per Ola Börjesson1

1Department of Information Technology, Lund University \\
P.O. Box 118, S-22100 Lund, Sweden

2Access Signal Processing Lab, Ericsson AB \\
P.O. Box 1505, S-12525 Stockholm, Sweden

3ETSI Telecomunicación, Universidad Politécnica de Madrid \\
Ciudad Universitaria s/n, 28040, Madrid, Spain

4FEEC/DECOM, Universidade Estadual de Campinas \\
C.P. 6101, 13083-852 Campinas SP, Brazil

SPIE OpticsEast, Boston, October 2006

This work has been supported by the EU (MUSE), VINNOVA-Celtic (BANITS), and FAPESP-Brazil.
Outline

- Background and motivation
- Cable models: state of the art
- Wideband measurements: challenge and setup
- Measurement results
- Conclusions and outlook
Background

- Wireline communications: data transmission over telephone wires
- Breakdown\(^1\) of broadband access technologies:

\(^1\)Average over OECD countries, December 2005
Digital Subscriber Line (DSL) achieves high rates by exploiting wide bands of the copper cable channel.

- Current DSL standards foresee the use of bands up to 30MHz.
- Cable properties have been studied by means of measurements, characterization and modeling up to frequencies of 30MHz.
- Very short cables (up to 200m) can be exploited even more.
- Prerequisite for further evaluation: cable models for higher frequencies.
Motivation

- Digital Subscriber Line (DSL) achieves high rates by exploiting wide bands of the copper cable channel.
- Current DSL standards foresee the use of bands up to 30MHz.
 - Cable properties have been studied by means of measurements, characterization and modeling up to frequencies of 30MHz.
 - Very short cables (up to 200m) can be exploited even more.
 - Prerequisite for further evaluation: cable models for higher frequencies.
Motivation

- Digital Subscriber Line (DSL) achieves high rates by exploiting wide bands of the copper cable channel.
- Current DSL standards foresee the use of bands up to 30MHz.
- Cable properties have been studied by means of measurements, characterization and modeling up to frequencies of 30MHz.
- Very short cables (up to 200m) can be exploited even more.
- Prerequisite for further evaluation: cable models for higher frequencies.
Motivation

- Digital Subscriber Line (DSL) achieves high rates by exploiting wide bands of the copper cable channel.
- Current DSL standards foresee the use of bands up to 30MHz.
- Cable properties have been studied by means of measurements, characterization and modeling up to frequencies of 30MHz.
- Very short cables (up to 200m) can be exploited even more.
- Prerequisite for further evaluation: cable models for higher frequencies.
Motivation

- Digital Subscriber Line (DSL) achieves high rates by exploiting wide bands of the copper cable channel
- Current DSL standards foresee the use of bands up to 30MHz
- Cable properties have been studied by means of measurements, characterization and modeling up to frequencies of 30MHz
- Very short cables (up to 200m) can be exploited even more
- Prerequisite for further evaluation: cable models for higher frequencies
State-of-the-art cable models

- Primary parameters (*RLCG*)
- Secondary parameters (characteristic impedance Z_0 and propagation constant γ)
- $ABCD$ model (based on secondary parameters)
- Multiconductor model
- None of current models deals with frequency bands above 30MHz
State-of-the-art cable models

- Primary parameters (*RLCG*)
- Secondary parameters (characteristic impedance Z_0 and propagation constant γ)
 - $ABCD$ model (based on secondary parameters)
 - Multiconductor model
 - None of current models deals with frequency bands above 30MHz
State-of-the-art cable models

- Primary parameters (RLCG)
- Secondary parameters (characteristic impedance Z_0 and propagation constant γ)
- $ABCD$ model (based on secondary parameters)
- Multiconductor model
- None of current models deals with frequency bands above 30MHz
State-of-the-art cable models

- Primary parameters ($RLCG$)
- Secondary parameters (characteristic impedance Z_0 and propagation constant γ)
- $ABCD$ model (based on secondary parameters)
- Multiconductor model

None of current models deals with frequency bands above 30MHz
State-of-the-art cable models

- Primary parameters ($RLCG$)
- Secondary parameters (characteristic impedance Z_0 and propagation constant γ)
- $ABCD$ model (based on secondary parameters)
- Multiconductor model
- None of current models deals with frequency bands above 30MHz
Reference models

- **Insertion loss [Chen98]:**

 \[H_{IL}(f, L) = e^{-L/L_{mile}}k_1 \sqrt{f} + k_2 f - jL/L_{mile}k_3 f \]
 with \(L_{mile} = 1609.344 \text{m} \), \(k_1 = 4.8 \times 10^{-3} \), \(k_2 = -1.709 \times 10^{-8} \), \(k_3 = 4.907 \times 10^{-5} \)

- **FEXT [ETSI01]:**

 \[H_{FEXT}(f, L) = k_{XF} f/ f_0 \sqrt{L/L_0} |H_{IL}(f, L)| \]
 with \(f_0 = 1 \text{MHz} \), \(L_0 = 1 \text{km} \), \(k_{XF} = 10^{-45/20} \)

- **NEXT [ETSI01]:**

 \[H_{NEXT}(f, L) = k_{XN} (f/f_0)^{3/4} \sqrt{1 - |H_{IL}(f, L)|^4} \]
 with \(f_0 = 1 \text{MHz} \), \(k_{XN} = 10^{-50/20} \)

\(f \) ... frequency in Hz, \(L \) ... length of the loop in m
Reference models

- **Insertion loss [Chen98]:**

 \[
 H_{IL}(f, L) = e^{-L/L_{mile}}k_1 \sqrt{f} + k_2 f - jL/L_{mile}k_3 f
 \]

 with \(L_{mile} = 1609.344 \text{m} \), \(k_1 = 4.8e^{-3} \), \(k_2 = -1.709e^{-8} \), \(k_3 = 4.907e^{-5} \) \hspace{1cm} (1)

- **FEXT [ETSI01]:**

 \[
 H_{FEXT}(f, L) = k_{XF} f / f_0 \sqrt{L/L_0} |H_{IL}(f, L)|
 \]

 with \(f_0 = 1\text{MHz} \), \(L_0 = 1\text{km} \), \(k_{XF} = 10^{-45/20} \) \hspace{1cm} (2)

- **NEXT [ETSI01]:**

 \[
 H_{NEXT}(f, L) = k_{XN} (f/f_0)^{3/4} \sqrt{1 - |H_{IL}(f, L)|^4}
 \]

 with \(f_0 = 1\text{MHz} \), \(k_{XN} = 10^{-50/20} \) \hspace{1cm} (3)

\(f \) ... frequency in Hz, \(L \) ... length of the loop in m
Reference models

- **Insertion loss [Chen98]:**

\[H_{IL}(f, L) = e^{-L/L_{mile}}k_1 \sqrt{f} + k_2 f - jL/L_{mile}k_3 f \]
with \(L_{mile} = 1609.344 \text{ m}, \ k_1 = 4.8 \times 10^{-3}, \ k_2 = -1.709 \times 10^{-8}, \ k_3 = 4.907 \times 10^{-5} \)

- **FEXT [ETSI01]:**

\[H_{FEXT}(f, L) = k_{XF} f/f_0 \sqrt{L/L_0} |H_{IL}(f, L)| \]
with \(f_0 = 1 \text{ MHz}, \ L_0 = 1 \text{ km}, \ k_{XF} = 10^{-45/20} \)

- **NEXT [ETSI01]:**

\[H_{NEXT}(f, L) = k_{XN} (f/f_0)^{3/4} \sqrt{1 - |H_{IL}(f, L)|^4} \]
with \(f_0 = 1 \text{ MHz}, \ k_{XN} = 10^{-50/20} \)

\(f \) ... frequency in Hz, \(L \) ... length of the loop in m
Measurement setup

Insertion loss: \(H_{\text{ins}} = \frac{V'_1}{V_1} \)

NEXT: \(H_{\text{NEXT}} = \frac{(V_3 - V_2)}{V_1} \)

FEXT: \(H_{\text{FEXT}} = \frac{(V'_3 - V'_2)}{V_1} \)
Measurement setup

- Insertion loss: \(H_{\text{ins}} = \frac{V'_1}{V_1} \)
- NEXT: \(H_{\text{NEXT}} = \frac{(V_3 - V_2)}{V_1} \)
- FEXT: \(H_{\text{FEXT}} = \frac{(V'_3 - V'_2)}{V_1} \)
Measurement setup

- Insertion loss: \(H_{\text{ins}} = \frac{V_1'}{V_1} \)
- NEXT: \(H_{\text{NEXT}} = \frac{V_3 - V_2}{V_1} \)
- FEXT: \(H_{\text{FEXT}} = \frac{V_3' - V_2'}{V_1} \)
Measurement setup

Insertion loss: \(H_{\text{ins}} = \frac{V'_1}{V_1} \)

NEXT: \(H_{\text{NEXT}} = \frac{(V_3 - V_2)}{V_1} \)

FEXT: \(H_{\text{FEXT}} = \frac{(V'_3 - V'_2)}{V_1} \)
Measurement setup

- Cables:
 - Cable No. 1: 200m EULEV 10x2x0.4 TEH 240 1402/010 on drum
 - Cable No. 2: 50m EULEV 10x2x0.4 TEH 240 1402/010 wrapped to a ring with a mean diameter of 0.55m

- Gain/phase-analyzer parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start frequency</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Stop frequency</td>
<td>200 MHz</td>
</tr>
<tr>
<td>No. of points</td>
<td>801</td>
</tr>
<tr>
<td>Averaging</td>
<td>32-fold</td>
</tr>
<tr>
<td>IF-bandwidth</td>
<td>30 kHz</td>
</tr>
<tr>
<td>Channel 1 settings</td>
<td>A/R, LOG MAG, source power: 0 dBm</td>
</tr>
<tr>
<td>Channel 2 settings</td>
<td>A/R, PHASE (RAD), source power: 0 dBm</td>
</tr>
<tr>
<td>Sweep time</td>
<td>352.4 ms</td>
</tr>
<tr>
<td>Sweep type</td>
<td>LIN FREQ</td>
</tr>
</tbody>
</table>
Cables:
- Cable No. 1: 200m EULEV 10x2x0.4 TEH 240 1402/010 on drum
- Cable No. 2: 50m EULEV 10x2x0.4 TEH 240 1402/010 wrapped to a ring with a mean diameter of 0.55m

Gain/phase-analyzer parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start frequency</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Stop frequency</td>
<td>200 MHz</td>
</tr>
<tr>
<td>No. of points</td>
<td>801</td>
</tr>
<tr>
<td>Averaging</td>
<td>32-fold</td>
</tr>
<tr>
<td>IF-bandwidth</td>
<td>30 kHz</td>
</tr>
<tr>
<td>Channel 1 settings</td>
<td>A/R, LOG MAG, source power: 0 dBm</td>
</tr>
<tr>
<td>Channel 2 settings</td>
<td>A/R, PHASE (RAD), source power: 0 dBm</td>
</tr>
<tr>
<td>Sweep time</td>
<td>352.4 ms</td>
</tr>
<tr>
<td>Sweep type</td>
<td>LIN FREQ</td>
</tr>
</tbody>
</table>
Stability and reproducibility of UWB measurements

50m-cable: mean insertion loss and 95% confidence interval

-20 -15 -10 -5 0

-20 -15 -10 -5 0

1 20 40 60 80 100 120 140 160 180 200

1 20 40 60 80 100 120 140 160 180 200

magnitude (dB)

phase (rad)
Stability and reproducibility of UWB measurements

50m-cable: mean FEXT and 95% confidence interval
Stability and reproducibility of UWB measurements

50m-cable: mean NEXT and 95% confidence interval

![Graph showing NEXT measurements and confidence intervals over frequency range from 1 MHz to 200 MHz. The graph displays magnitude in dB and phase in radians.]
50m-cable, long-term measurements: FEXT coupling function ensemble mean (corresponds to mean over time) and minimum/maximum range (gray-shaded fields)
200m-cable, long-term measurements: FEXT coupling function ensemble mean (corresponds to mean over time) and minimum/maximum range (gray-shaded fields)
Comparison with extrapolated 30MHz-models

50m-cable, insertion loss: ensemble mean and extrapolated Chen-model (1)
Comparison with extrapolated 30MHz-models

50m-cable, FEXT: ensemble mean and extrapolated ETSI-model (2)

![Graph showing comparison between measured data and extrapolated ETSI-model for 50m-cable FEXT. The graph displays magnitude and phase across different frequencies.]
Comparison with extrapolated 30MHz-models

50m-cable, NEXT: ensemble mean and extrapolated ETSI-model (3)
Comparison with extrapolated 30MHz-models

200m-cable, insertion loss: ensemble mean and extrapolated Chen-model (1)

![Graph showing comparison between measured and extrapolated Chen-model](image)

- **Magnitude (dB)**
 - **measured**
 - $|H_{IL}(f, 200)|$

- **Phase (rad)**
 - **measured**
 - $\arg(H_{IL}(f, 200))$
Comparison with extrapolated 30MHz-models

200m-cable, FEXT: ensemble mean and extrapolated ETSI-model (2)
Comparison with extrapolated 30MHz-models

200m-cable, NEXT: ensemble mean and extrapolated ETSI-model (3)
Conclusion

- Measurement results of insertion loss and crosstalk coupling properties of short copper cables for frequencies beyond 30MHz
- Good match between the measured insertion loss results and the extrapolated 30MHz models
- Extrapolated ETSI models are
 - reasonable worst-case models for crosstalk over 50m
 - a bit too pessimistic for crosstalk over 200m
Conclusion

- Measurement results of insertion loss and crosstalk coupling properties of short copper cables for frequencies beyond 30MHz
- Good match between the measured insertion loss results and the extrapolated 30MHz models
- Extrapolated ETSI models are
 - reasonable worst-case models for crosstalk over 50m
 - a bit too pessimistic for crosstalk over 200m
Conclusion

- Measurement results of insertion loss and crosstalk coupling properties of short copper cables for frequencies beyond 30MHz.
- Good match between the measured insertion loss results and the extrapolated 30MHz models.
- Extrapolated ETSI models are:
 - reasonable worst-case models for crosstalk over 50m.
 - a bit too pessimistic for crosstalk over 200m.
Cumulative Shannon rate versus frequency
'Usable' bandwidth versus length
Outlook

Shannon rate versus length

- Shannon rate in Mbit/s
- Loop length in m

Graph showing the relationship between Shannon rate and loop length.
Thank you!