Protected Ring Network in Optical Access Domain

J. Grubor, M. Schlosser, K.-D. Langer

Fraunhofer-Institute for Telecommunications
Heinrich-Hertz-Institut
Berlin, Germany

NOC 2004, Eindhoven
Overview

• Motivation
• Access network concept
• Protection implementation
• Protocol options
• Migration path
• Summary and outlook
Future access networks

The Demand

• Greater demand for customers’ bandwidth
• Technology improvement and infrastructure upgrade

➢ Fiber-based access network (*Fiber To The Premises*)
➢ e.g. 10 Mb/s (mean) – 100 Mb/s (peak) customer’s bandwidth

The Issue

• Cost sensitivity of the network infrastructure
Motivation

Cost-effective features for access
• Few fibers → ring topology
• Passive outside plant
• Coarse WDM technology

1. Investigate technical feasibility of an optical network that would
 – exploit these features
 – use simple and commercially available components
 – be dimensioned to cover typical access areas

2. Investigate possibility of protection implementation
 as a feature of growing importance in the access area
Network structure based on rings

HUB
Active, CO

FAR (Feeder Area Ring)
max 16 CWDM channels
1.25 Gb/s/\(\lambda\)

DAR (Distribution Area Ring)
Point-to-point connections
Shared \(\lambda\) channels
Protocol driven access (Ethernet)

End-User
e.g. 10 Mb/s guaranteed

ONU (Optical Network Unit)
Active OE nodes,
building cellar, street cabinet

High-End customer
Dedicated \(\lambda\)

Grubor, 30. June 2004
Protection against a single link failure

...working case

...link failure in FAR

...link failure in DAR
Nodal architectures

<table>
<thead>
<tr>
<th>Additional Downstream hardware in HUB</th>
<th>Optical switch</th>
<th>Optical splitter</th>
<th>Tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAR protection</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>APSD possibility</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Insertion loss, dB</td>
<td>~1</td>
<td>~3</td>
<td>0</td>
</tr>
</tbody>
</table>

APSD – Automatic Power Shutdown

Grubor, 30. June 2004
Protection against HUB failure

Optical function drop-and-continue

Dual homing
(no change in fiber infrastructure)

HUB by-passing
(simultaneous link and HUB failures handled in all cases)

Grubor, 30. June 2004
Protocol options for Ethernet-based solutions

<table>
<thead>
<tr>
<th>Standard</th>
<th>STP</th>
<th>RSTP</th>
<th>Vendor specific</th>
<th>RPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restoration time</td>
<td>30 to 50 s</td>
<td>1 to 3 s</td>
<td>up to 1 s</td>
<td>50 ms</td>
</tr>
<tr>
<td>Pro’s</td>
<td>Available in most Ethernet switches</td>
<td>Fast restoration (up to 50 nodes)</td>
<td>Very fast restoration (up to 255 nodes)</td>
<td></td>
</tr>
<tr>
<td>Con’s</td>
<td>Difficult scalability</td>
<td>Difficult scalability</td>
<td>Not standardised</td>
<td>Complex structure</td>
</tr>
<tr>
<td></td>
<td>Very slow</td>
<td>Slow</td>
<td>Not compatible to STP/RSTP</td>
<td>Expensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not all functionality needed for access</td>
<td></td>
</tr>
</tbody>
</table>

STP – Spanning Tree Protocol
RSTP – Rapid Spanning Tree Protocol
RPR – Resilient Packet Ring

Too slow for real time applications, but this may be acceptable

Grubor, 30. June 2004

Fraunhofer Institut Nachrichtentechnik Heinrich-Hertz-Institut
Migration Path

- Gradual and smooth transition to keep risk at minimum
- In the beginning...
 - Some CWDM channels saved for future use
 - Fiber laid only to RNs
 - Both passive and active hardware in RNs
 - VDSL / fixed wireless between RNs and end-users
 - Even possible to start with a non-closed FAR (no protection)
- Later on...
 - Fiber based DARs in some of the RNs’ DAs (passive RNs)
 - Optical interface at ONUs at/near customers premises / base stations
 - Protection in fiber-based parts of the network
Migration Path (cont.)

• And more later on…
 - Fibre dominant in distribution area (more DARs)
 - Insertion of new ONUs (larger DARs)
 - HEC customers with dedicated CWDM channels

• And eventually…
 – CWDM channels for new DARs,
 – DWDM for point-to-point overlay for HECs

• Upgrade from 1.25 Gb/s to 10 Gb/s for one λ-channel in parallel
 (8-fold increase of total capacity)

• More detailed migration path (especially in DA) for further study
Summary and outlook

- Feasibility of protected ring network in access domain using available components has been shown
- Passive remote nodes – OADMs with fixed wavelengths
- Possible protection against link/HUB failure
- Possible fast restoration with specific Ethernet based protocols or RPR
- Smooth evolution path shown
- Scalability to ~1600 customers with guaranteed 10 Mb/s
- Flexible capacity distribution up to ~1Gb/s
- Upgradeability to 10 Gb/s/λ (APD)
- ...
- Future research: experimental demonstration and further evaluation

Grubor, 30. June 2004
Thank you for attention...