Towards Autonomic Access Networks for Service QoE Optimization

speaker: Pieter Simoens

Joint work

INTEC - IBBT, Ghent University, Belgium
P. Simoens, B. De Vleeschauwer, W. Van de Meerssche, F. De Turck, B. Dhoedt, P. Demeester

Alcatel Research & Innovation, Belgium
E. Gilon, K. Struyve, T. Van Caeneghem
Multiplay, one single network

3 services converged in a single access network

IP/Ethernet based access network

new rich multimedia services have emerged!

telephony internet television

Video conferencing Video on Demand WAN gaming
Access Network Topology

- **home network**
 - end devices
 - home gateway
 - modem

- **aggregation network**
 - DSL
 - access node
 - aggregation switch
 - service edge router
Classification of services

- **Best effort** services still remain (very) popular
 - Web surfing
 - E-mail
 - File transfer
- **New services require** **Quality of Experience**:
 - VOIP
 - Interactive TV
 - Video on Demand
 - Multimedia Internet Services
- **QoE includes**
 - Speed (surfing, up- and downloads)
 - Interactivity: low delay, low jitter (telephony, videoconferencing, gaming)
 - Content quality (lip synced IPTV, voice quality)
QoE in the access network

QoE difficult to achieve

- In the aggregation network
 - Complexity of multimedia services
 - Multiplicity of multimedia services
 - Stringent requirements
 - Network availability, packet loss, delay, jitter, bandwidth

- In the home network
 - Myriad of devices with different specifications
 - Firewall and NAT hinder access to home network access equipment

There is a need for autonomous QoE management in the access network, stretching from service edge router up to the end device
MUSE = Multi-Service Access Everywhere

European 6th Framework Program (IST)

System Vendors, Component Vendors, Telecom Operators, Universities

36 partners – 26 organizations

Two phases

- Definition of multi-service access architecture (2004 – 2005)
- Maturing the access network (2006 – 2007)
 - Service enablers in the access network elements for multimedia services
 - Fixed mobile convergence
 - Distributed architectures and node consolidation

www.ist-muse.org
Agenda

- Autonomous Access Network QoE Management
 - Architecture
 - Functionality
 - Monitor Plane
 - Knowledge Plane
 - Interaction between both layers

- Autonomic Access Node
 - Motivation
 - Functionality
2-layered architecture

Knowledge Plane
- root cause analysis
- restorative action

Monitor Plane
- QoE decrease detected

- **Device parameters**
- wireless link statistics
- noise margin
- queue filling
- reconfiguration
- BW reservation
- rerouting

- **End devices**
 - home network
 - modem

- **Home network**
 - gateway

- **Access node**
 - DSL

- **Network service**
 - aggregation network
 - edge router

- **Gateway**
 - reconfiguration

- **Home network**
 - modem

- **Monitor Plane**
 - QoE decrease detected

- **Knowledge Plane**
 - root cause analysis
 - restorative action
Monitor data forms a knowledge base for autonomous components

- Acquire accurate view on network status and QoE of running services
- Store monitor information in dedicated data structures
 - Summary
 - Format appropriate for Knowledge Plane processing
Monitor Plane

- **Monitor tools**
 - Active monitoring seldom useful
 - Passive monitoring of
 - Aggregation switches: SNMP, RMON, NetFlow, IPFIX
 - Access line quality: TR-069 + ACS
 - Home network
 - Monitoring from access node

- **Data reduction**
 - Sliding window, sampling…
 - Data structures
 - Sketches [1]
 - Deltoids [2]

Knowledge Plane

QoE Restorative actions

Root Cause analysis

Manage & Process monitoring data

- Management of Monitor Plane
- Interpret and correlate monitor data
- Detect QoE degradation
- Track root cause
- Actions to restore QoE

interaction
- **Anomaly detection**
 - Running algorithms on sketches/deltoids

- **Correlation**
 - Spatial correlation
 - Temporal correlation
 - e.g. detect latent long-term jitter increase
 - e.g. drop of BW during peak hours

> Monitor Data Processing

Knowledge Plane

Root cause most probable in aggregation network or service edge

QoE degradation of service A

QoE degradation of service A
Accurate root cause detection requires correct network model

Model must include
- All components (physical and logical)
- Relations between components

Ontologies very well suited
- reasoner can extract implicit knowledge
- e.g. packet loss on connection
 - source/destination attribute
 - topology database
 - packet route
 - query interconnecting links and switches/routers
 - localization of congested link
QoE Restorative Actions

- **Depends on:**
 - Location and nature of root cause
 - e.g. home network vs aggregation network
 - e.g. link or switch congestion
 - Type of affected service
 - IPTV service
 - Activate application layer interleaving, FEC or transcoding
 - High speed internet
 - Rerouting traffic
 - Change priorities of traffic classes

- **Take the impact on other services and the network status into account**
Interaction

Knowledge Plane

- Process monitor data
- Problem detection
- Change parameters
- Additional information required
- Root cause analysis
- Anomaly detection
- Spatial/temporal correlation
- Activate additional data structures or probes
- QoE restoring actions
- Restoring actions
- Additional information required
- Change parameters

Monitor Plane

- Data structure
- Data structure
- Data structure
- Probe 1
- Probe 2
- ...
Distributed architecture

- Tree-like topology of aggregation network
- Some problems can be solved locally
 - e.g. home network misconfiguration
- Others need central coordination
 - e.g. clients behind different access nodes suffering from QoE degradation
Agenda

- **Autonomous Access Network QoE Management**
 - Architecture
 - Functionality
 - Monitor Plane
 - Knowledge Plane
 - Interaction between both layers

- **Autonomic Access Node**
 - Motivation
 - Functionality
- **Nearest point to home user still within reach of network provider**
 - NAT/firewall issues
- **Root cause location tracking**
 - Crossing point between aggregation and home network
- **Passing point of all services of all connected users**
 - Correlation per user
 - Correlation per service
Monitor Plane in the access node

- **A lot of valuable information already present**
 - IGMP join/leave messages for IPTV multicast
 - Link connectivity
 - Subscription conditions (bandwidth, down/upload)

- **Monitor information about home network**
 - Home network access hindered by NAT/firewall
 - **Difficult to install probes**
 - Some protocols have two-way traffic
 - **Packet sniffing on access node**
 - **Retrieve information about factors affecting the QoE (as perceived by end-user)**
 - packet loss, delay, jitter, round-trip time, # retransmissions
 - e.g. TCP, RTP/RTCP
TCP

- Used for a lot of services
 - internet download, web services
 - transport of IPTV services like VoD
- Congestion control mechanism downscales bandwidth
 - packet loss causes ACK time-out and retransmission
 → wrongly triggered by non-congestion loss and excessive jitter
- Work in progress:
 - monitoring TCP traffic on the access node
 - retrieve information on
 - RTT
 - Jitter
 - Packet loss
 - # retransmissions
Real-Time Transmission Protocol (RFC 3550)
- Timely delivery of multimedia data
- Broadcast TV, Video on Demand

Two protocols
- RTP: data packets
- RTCP: control information
 - Time base synchronization information
 - Identification of session participants
 - Feedback on sent/received data
 - Sender/Receiver Reports
 - Contain valuable information on QoE as perceived by the user
 - Sniffing of the reports on the access node
RTCP reports

- A lot of valuable parameters!
- Sender report is extended version of receiver report

<table>
<thead>
<tr>
<th>V</th>
<th>P</th>
<th>RC</th>
<th>PT=SR=200</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSRC of sender</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NTP timestamp, most significant word</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NTP timestamp, least significant word</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RTP timestamp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sender’s packet count</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sender’s octet count</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSRC_1 (SSRC of first sender)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fraction lost</td>
<td>Cumulative number of packets lost</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Extended highest sequence number</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interarrival jitter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Last SR (LSR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delay since last SR (DLSR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Report block for other SSRCs</td>
<td></td>
</tr>
</tbody>
</table>

no. of packets and octets sent
estimated packet loss
estimated jitter
RTT estimation
Access Node Actions

- **QoE Restoring Actions**
 - Application layer FEC or interleaving
 - e.g. in case of packet loss on DSL line
 - Transcoding or transrating
 - e.g. in case of mismatch between codec and device specifications

- **QoE optimization**
 - e.g. push popular content to VoD proxy on access node to reduce bandwidth usage in aggregation network

- **Reporting to central platform**
 - e.g. report on retransmission request pattern per household
Multimedia services on the access network require QoE

QoE management very complex

Two-layer architecture

- Monitor Plane
- Knowledge Plane
- Extensive interaction between both layers

Key role for the access node

- Architecture
- Protocol sniffing for monitoring of home network
Thank you for your attention!

Any questions?