Limits of Ultra-Wideband Communication Over Copper

T. Magesacher1 J. Rius i Riu1,2 P. Ödling1 P. O. Börjesson1 M. Tilocca3 M. Valentini3

1Department of Information Technology, Lund University
P.O. Box 118, S-22100 Lund, Sweden

2Ericsson AB, Broadband Access Research (BAR)
Torshamnsgatan 29, House 32, Stockholm, Sweden

3Telecom Italia
Via Reiss Romoli 274, 10148 Torino, Italy

ICCT, Guilin, China, November 2006

This work has been supported by the EU (IST-MUSE) and VINNOVA-Celtic (BANITS-2).
Outline

- Background and motivation
- Wideband cable-models and measurement results
- Throughput analysis and results
- Conclusions and outlook
Background

- Wireline communications: data transmission over telephone wires
- Breakdown\(^1\) of broadband access technologies:

![Pie chart showing wireline, cable, and rest percentages.]

\(^1\)Average over OECD countries, December 2005
Motivation

Digital Subscriber Line (DSL) achieves high rates by exploiting wide bands of the copper cable channel

- Current DSL standards foresee the use of bands up to 30MHz
- Cable properties have been studied by means of measurements, characterization and modeling up to frequencies of 30MHz
- Very short cables (up to 200m) can be exploited even more
- Prerequisite for further evaluation: cable models for higher frequencies
Motivation

- Digital Subscriber Line (DSL) achieves high rates by exploiting wide bands of the copper cable channel
- Current DSL standards foresee the use of bands up to 30MHz
 - Cable properties have been studied by means of measurements, characterization and modeling up to frequencies of 30MHz
 - Very short cables (up to 200m) can be exploited even more
 - Prerequisite for further evaluation: cable models for higher frequencies
Digital Subscriber Line (DSL) achieves high rates by exploiting wide bands of the copper cable channel.

Current DSL standards foresee the use of bands up to 30MHz.

Cable properties have been studied by means of measurements, characterization and modeling up to frequencies of 30MHz.

Very short cables (up to 200m) can be exploited even more.

Prerequisite for further evaluation: cable models for higher frequencies.
Digital Subscriber Line (DSL) achieves high rates by exploiting wide bands of the copper cable channel

Current DSL standards foresee the use of bands up to 30MHz

Cable properties have been studied by means of measurements, characterization and modeling up to frequencies of 30MHz

Very short cables (up to 200m) can be exploited even more

Prerequisite for further evaluation: cable models for higher frequencies
Motivation

- Digital Subscriber Line (DSL) achieves high rates by exploiting wide bands of the copper cable channel
- Current DSL standards foresee the use of bands up to 30MHz
- Cable properties have been studied by means of measurements, characterization and modeling up to frequencies of 30MHz
- Very short cables (up to 200m) can be exploited even more
- Prerequisite for further evaluation: cable models for higher frequencies
Reference models

- **Insertion loss** [Chen98]:
 \[H_{IL}(f, L) = e^{-L/L_{\text{mile}}} \left(k_1 \sqrt{f} + k_2 f \right) - jL/L_{\text{mile}}k_3 f \]
 with \(L_{\text{mile}} = 1609.344 \text{ m} \), \(k_1 = 4.8 \cdot 10^{-3} \), \(k_2 = -1.709 \cdot 10^{-8} \), \(k_3 = 4.907 \cdot 10^{-5} \)

- **FEXT** [ETSI01]:
 \[H_{FEXT}(f, L) = k_{XF} f / f_0 \sqrt{L/L_0} |H_{IL}(f, L)| \]
 with \(f_0 = 1 \text{ MHz} \), \(L_0 = 1 \text{ km} \), \(k_{XF} = 10^{-45/20} \)

- **NEXT** [ETSI01]:
 \[H_{NEXT}(f, L) = k_{XN} \left(f / f_0 \right)^{3/4} \sqrt{1 - |H_{IL}(f, L)|^4} \]
 with \(f_0 = 1 \text{ MHz} \), \(k_{XN} = 10^{-50/20} \)

\(f \) ... frequency in Hz, \(L \) ... length of the loop in m
Reference models

- **Insertion loss** [Chen98]:

\[
H_{IL}(f, L) = e^{-L/L_{\text{mile}}(k_1\sqrt{f}+k_2f)} - jL/L_{\text{mile}}k_3f
\]
with \(L_{\text{mile}} = 1609.344\text{m} \), \(k_1 = 4.8 \cdot 10^{-3} \), \(k_2 = -1.709 \cdot 10^{-8} \), \(k_3 = 4.907 \cdot 10^{-5} \)

- **FEXT** [ETSI01]:

\[
H_{FEXT}(f, L) = k_{XF}f / f_0 \sqrt{L/L_0}|H_{IL}(f, L)|
\]
with \(f_0 = 1\text{MHz} \), \(L_0 = 1\text{km} \), \(k_{XF} = 10^{-45/20} \)

- **NEXT** [ETSI01]:

\[
H_{NEXT}(f, L) = k_{XN}(f / f_0)^{3/4} \sqrt{1 - |H_{IL}(f, L)|^4}
\]
with \(f_0 = 1\text{MHz} \), \(k_{XN} = 10^{-50/20} \)

\(f \) ... frequency in Hz, \(L \) ... length of the loop in m
Reference models

- **Insertion loss [Chen98]:**

\[
H_{IL}(f, L) = e^{-L/L_{\text{mile}}(k_1 \sqrt{f} + k_2 f) - jL/L_{\text{mile}}k_3 f}
\]
with \(L_{\text{mile}} = 1609.344 \text{m}, k_1 = 4.8 \times 10^{-3}, k_2 = -1.709 \times 10^{-8}, k_3 = 4.907 \times 10^{-5} \)

- **FEXT [ETSI01]:**

\[
H_{FEXT}(f, L) = k_{XF} f / f_0 \sqrt{L/L_0} |H_{IL}(f, L)|
\]
with \(f_0 = 1\text{MHz}, L_0 = 1\text{km}, k_{XF} = 10^{-45/20} \)

- **NEXT [ETSI01]:**

\[
H_{NEXT}(f, L) = k_{XN} (f/f_0)^{3/4} \sqrt{1 - |H_{IL}(f, L)|^4}
\]
with \(f_0 = 1\text{MHz}, k_{XN} = 10^{-50/20} \)

\(f \) ... frequency in Hz, \(L \) ... length of the loop in m
Measurement setup

- **Insertion loss:** $H_{\text{ins}} = \frac{V'_{1}}{V_{1}}$
- **NEXT:** $H_{\text{NEXT}} = \frac{(V_{3} - V_{2})}{V_{1}}$
- **FEXT:** $H_{\text{FEXT}} = \frac{(V'_{3} - V'_{2})}{V_{1}}$
Measurement setup

- **Insertion loss:** $H_{\text{ins}} = \frac{V_1'}{V_1}$
- **NEXT:** $H_{\text{NEXT}} = \frac{(V_3 - V_2)}{V_1}$
- **FEXT:** $H_{\text{FEXT}} = \frac{(V_3' - V_2')}{V_1}$
Insertion loss: $H_{\text{ins}} = V_1'/V_1$

NEXT: $H_{\text{NEXT}} = (V_3 - V_2)/V_1$

FEXT: $H_{\text{FEXT}} = (V_3' - V_2')/V_1$
Measurement setup

- Insertion loss: $H_{\text{ins}} = \frac{V'_1}{V_1}$
- NEXT: $H_{\text{NEXT}} = \frac{(V_3 - V_2)}{V_1}$
- FEXT: $H_{\text{FEXT}} = \frac{(V'_3 - V'_2)}{V_1}$
Cables:
- Cable No. 1: 200m EULEV 10x2x0.4 TEH 240 1402/010 on drum
- Cable No. 2: 50m EULEV 10x2x0.4 TEH 240 1402/010 wrapped to a ring with a mean diameter of 0.55m

Gain/phase-analyzer parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start frequency</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Stop frequency</td>
<td>200 MHz</td>
</tr>
<tr>
<td>No. of points</td>
<td>801</td>
</tr>
<tr>
<td>Averaging</td>
<td>32-fold</td>
</tr>
<tr>
<td>IF-bandwidth</td>
<td>30 kHz</td>
</tr>
<tr>
<td>Channel 1 settings</td>
<td>A/R, LOG MAG, source power: 0 dBm</td>
</tr>
<tr>
<td>Channel 2 settings</td>
<td>A/R, PHASE (RAD), source power: 0 dBm</td>
</tr>
<tr>
<td>Sweep time</td>
<td>352.4 ms</td>
</tr>
<tr>
<td>Sweep type</td>
<td>LIN FREQ</td>
</tr>
</tbody>
</table>
Measurement setup

- Cables:
 - Cable No. 1: 200m EULEV 10x2x0.4 TEH 240 1402/010 on drum
 - Cable No. 2: 50m EULEV 10x2x0.4 TEH 240 1402/010 wrapped to a ring with a mean diameter of 0.55m

- Gain/phase-analyzer parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start frequency</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Stop frequency</td>
<td>200 MHz</td>
</tr>
<tr>
<td>No. of points</td>
<td>801</td>
</tr>
<tr>
<td>Averaging</td>
<td>32-fold</td>
</tr>
<tr>
<td>IF-bandwidth</td>
<td>30 kHz</td>
</tr>
<tr>
<td>Channel 1 settings</td>
<td>A/R, LOG MAG, source power: 0 dBm</td>
</tr>
<tr>
<td>Channel 2 settings</td>
<td>A/R, PHASE (RAD), source power: 0 dBm</td>
</tr>
<tr>
<td>Sweep time</td>
<td>352.4 ms</td>
</tr>
<tr>
<td>Sweep type</td>
<td>LIN FREQ</td>
</tr>
</tbody>
</table>
Stability and reproducibility of UWB measurements

50m-cable: mean insertion loss and 95% confidence interval

![Graph showing magnitude and phase vs frequency for 50m-cable measurements.]
Stability and reproducibility of UWB measurements

50m-cable: mean FEXT and 95% confidence interval
50m-cable: mean NEXT and 95% confidence interval
Long-term variations of UWB cable properties

50m-cable, long-term measurements: FEXT coupling function ensemble mean (corresponds to mean over time) and minimum/maximum range (gray-shaded fields)
200m-cable, long-term measurements: FEXT coupling function ensemble mean (corresponds to mean over time) and minimum/maximum range (gray-shaded fields)
Comparison with extrapolated 30MHz-models

50m-cable, insertion loss: ensemble mean and extrapolated Chen-model (1)
Comparison with extrapolated 30MHz-models

50m-cable, FEXT: ensemble mean and extrapolated ETSI-model (2)
Comparison with extrapolated 30MHz-models

50m-cable, NEXT: ensemble mean and extrapolated ETSI-model (3)
Comparison with extrapolated 30MHz-models

200m-cable, insertion loss: ensemble mean and extrapolated Chen-model (1)
Comparison with extrapolated 30MHz-models

200m-cable, FEXT: ensemble mean and extrapolated ETSI-model (2)
Comparison with extrapolated 30MHz-models

200m-cable, NEXT: ensemble mean and extrapolated ETSI-model (3)
Ingress/egress: constraints imposed by CISPR22

Receive PSDs (solid lines), transmit PSD (dashed-dotted lines) and noise PSD caused by CISPR22 ingress (dashed line)
Ingress/egress: constraints imposed by CISPR22 and 1 FEXT

Receive PSDs (solid lines), transmit PSD (dashed-dotted lines) and noise PSD caused by CISPR22 ingress one equal-length FEXT disturber (dashed line)
Capacity versus exploited bandwidth for CISPR22 ingress

![Graph showing capacity versus exploited bandwidth for CISPR22 ingress. The x-axis represents exploited bandwidth in MHz, and the y-axis represents data rate in Gbit/s. The graph includes curves for different cable lengths: 100 m, 150 m, 200 m, 250 m, and 300 m. Each curve shows the expected data rate for a given bandwidth and cable length.]
Capacity versus exploited bandwidth

Capacity versus exploited bandwidth for CISPR22 ingress one equal-length FEXT disturber

![Graph showing capacity versus exploited bandwidth for different lengths of cable (100 m, 150 m, 200 m, 250 m, 300 m)].

- The x-axis represents exploited bandwidth in MHz, ranging from 0 to 100 MHz.
- The y-axis represents data rate in Gbit/s, ranging from 0 to 0.5 Gbits/s.
- Each line corresponds to a different cable length:
 - 100 m
 - 150 m
 - 200 m
 - 250 m
 - 300 m

The graph illustrates how the capacity (data rate) increases with exploited bandwidth and decreases as the cable length increases.
'Usable' bandwidth versus length

![Graph showing 'Usable' bandwidth versus loop length in m, with y-axis in MHz and x-axis in m. Two lines represent CISPR 22 ingress only and CISPR 22 ingress + 1 FEXT.]
Capacity versus loop length

- CISPR 22 ingress only
- CISPR 22 ingress + 1 FEXT
Conclusion

- Good match between measured insertion loss results and the extrapolated 30MHz-models
- Reasonable match between measured crosstalk-coupling functions and the extrapolated 30MHz-models
- Considering CISPR22, we do not need to look beyond 100MHz!
- Considering CISPR22, the limits are ...
 - \(\approx 0.5 \text{ Gbit/s} \) without FEXT
 - \(\approx 200 \text{ Mbit/s} \) with one (strong) FEXT disturber
Conclusion

- Good match between measured insertion loss results and the extrapolated 30MHz-models
- Reasonable match between measured crosstalk-coupling functions and the extrapolated 30MHz-models
- Considering CISPR22, we do not need to look beyond 100MHz!
- Considering CISPR22, the limits are ...
 - \(\approx 0.5 \text{ Gbit/s without FEXT} \)
 - \(\approx 200 \text{ Mbit/s with one (strong) FEXT disturber} \)
Conclusion

- Good match between measured insertion loss results and the extrapolated 30MHz-models
- Reasonable match between measured crosstalk-coupling functions and the extrapolated 30MHz-models
- Considering CISPR22, we do not need to look beyond 100MHz!
 - Considering CISPR22, the limits are ...
 - ≈ 0.5 Gbit/s without FEXT
 - ≈ 200 Mbit/s with one (strong) FEXT disturber
Conclusion

- Good match between measured insertion loss results and the extrapolated 30MHz-models
- Reasonable match between measured crosstalk-coupling functions and the extrapolated 30MHz-models
- Considering CISPR22, we do not need to look beyond 100MHz!
- Considering CISPR22, the limits are ...
 - $\approx 0.5 \text{ Gbit/s without FEXT}$
 - $\approx 200 \text{ Mbit/s with one (strong) FEXT disturber}$
Thank you!