Concurrent Remote Management of CPE by multiple Service Providers

H. Balemans Alcatel-Lucent
A. De Smedt Thomson
F.T.H. den Hartog TNO
J. Önnegren Ericsson
Summary

- Remote Management – What and Why?
- The problem with Multi-Provider CPE Management
- Scope & Assumptions
- Terminology
- The three Multi-Provider Management Models
- Models Assessment – Pros & Cons
- Conclusions
The Complex Home

- Increasing number of devices, connected by a home network
- Increasingly complex to install, configure and troubleshoot
- Needs to be simpler to drive large scale adoption
Remote Management – Why?

➢ Benefits
 • For the end user:
 – Ease of use
 – Fast response to new installation, subscription
 • For the Service Provider:
 – Less need to send technicians
 – Central diagnostics, testing and problem fixing

➢ Issues
 • Privacy concerns of the end user
 • Additional infrastructure (servers, management system)
With multiple providers, conflicts may arise on shared resources

Conflicts may lead to service degradation or complete outage
Scope & Assumptions

- End user has only 1 (physical) HG for all services
 - Long term view in Home Gateway Initiative
 - Short term: end user may have multiple boxes (1 per provider?) – not considered here

- HG and other CPE managed automatically
 - Configuration
 - Diagnostics and testing

- Roles and Business entity relationships are not defined here
 - Who “owns” what - is not discussed
Terminology

- **RCE**: Remotely managed Customer Equipment
 - Any device (HG or other) that is remotely managed

- **ACS**: Auto-Configuration Server
 - Server in the network that downloads configuration data to RCE autonomously as per policies and profiles defined by OSS

- **OSS**: Operations Support System
 - The management systems that define profiles, policies, etc. which are used to instruct ACSs

- **NBI**: NorthBound Interface (to OSS)
 - Management interface for Network Elements

- **CWMP**: CPE WAN Management Protocol (TR-069)
 - For exchanging management information between RCE and ACS
Model #1: The “RCE” Model

- Each provider has own ACSs, defines configuration policies through own OSS
- Conflicts to be resolved in RCE
- RCE communicates with multiple ACSs, not compliant to TR-069
Model #2: The “ACS” Model

- Each RCE is configured by one and only one ACS, compliant with TR-069
- ACS configuration policies defined through OSSs from different providers
- Conflicts to be resolved in ACS
Model #3: The “OSS” Model

- Single point of contact for SPs per region
- RCE configuration controlled by one party
- Conflicts to be resolved in OSS, before deployment on ACS
“RCE” Model Assessment

Pros

• Maximum degree of freedom for Service Providers
• Fast deployment because of direct access

Cons:

• Reactive model (service interruptions before problems are solved)
• Low visibility of conflicts at Service Providers
• All ACSs must be queried when rebooting RCE (longer boot time)
• Increased cost of RGW
• Providers need own ACSs (expensive for large scale deployment)
• TR-069 assumes 1 ACS only
“ACS” Model Assessment

➢ Pros:
 • Large degree of freedom for Service Providers
 • Ideally no service interruption
 • ACS costs are shared among Service Providers
 • One ACS per RCE (minimum boot time)
 • TR-069 compliant

➢ Cons:
 • Trial-and-error model (try deployment of policy until ACS accepts)
 • Low visibility of conflicts at Service Providers
 • Increased cost of ACS
 • Service Provider must contact all ACSs in regions of deployment
“OSS” Model Assessment

➢ Pros:
 • Proactive model (detect problems before they arise)
 • High visibility of conflicts at Service Providers
 • Only 1 point of contact per deployment region
 • ACS costs are shared among Service Providers
 • One ACS per RCE (minimum boot time)
 • TR-069 compliant

➢ Cons:
 • Access to ACS and RCE is restricted to 1 provider – risk for monopolistic behaviour
Conclusions

😊 “RCE” model requires changes in CWMP standard
😊 “RCE” model has highest risk of service interruption
😊 Boot procedure of RCE will take long in “RCE” model
😊 In “ACS” model, ACS may not have enough RCE knowledge to resolve conflicts
😊 The “OSS” model is the least expensive in Capex and Opex
😊 “OSS” model assumes single party ownership / control of HG

… leading to:

➔ “OSS” model seems most viable
 • Home Gateway Initiative reached the same conclusion
Acknowledgements

This research is performed within the MUSE project that is partially funded by the European Commission as part of the European IST 6th Framework Program.
Thank You